

LOW NOX TWO STAGE GAS BURNERS

► GULLIVER BSD SERIES

CE

▶ BS1D 16/19 ÷ 52 k	W
▶ BS2D 35/40 ÷ 91 k	W
▶ BS3D 65/75 ÷ 189 k	W
▶ BS4D 110/140 ÷ 246 k	W

The Riello Gulliver BSD series of two stage gas burners, is a complete range of Low NOx emission products, developed to respond to any request for home heating, conforming to the most severe standards regarding the reduction of polluting emissions.

This series of burners is available in four different models with an output ranging from 16 to 246 kW, divided in four different structures.

All the models use the same components designed by Riello for the Gulliver series. The high quality level guarantees safe working. The Gulliver BSD burners are fitted with a microprocessor - based flame control panel, with diagnostic functions.

In developing these burners, special attention was paid to reducing noise, the ease of installation and adjustment, to obtaining the smallest size possible to fit into any sort of boiler available on the market.

Two stage working guarantees high level performance from the thermal unit.

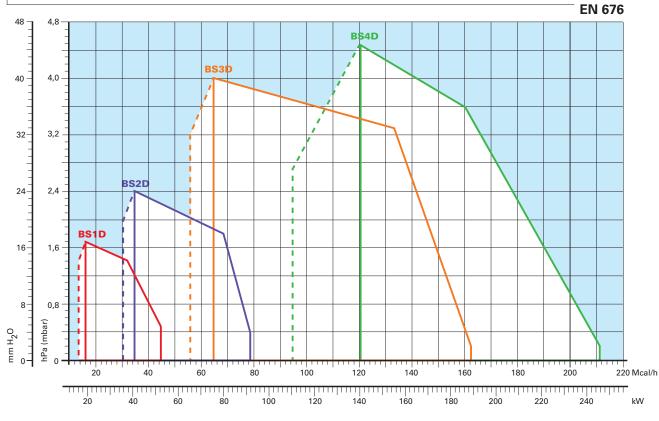
All the models are approved by the EN 676 European Standard and LRV 92 Swiss standards, and conform to BlmSchV 1996 and European Directives, Gas Appliance, EMC, Low Voltage, Boiler Efficiency.

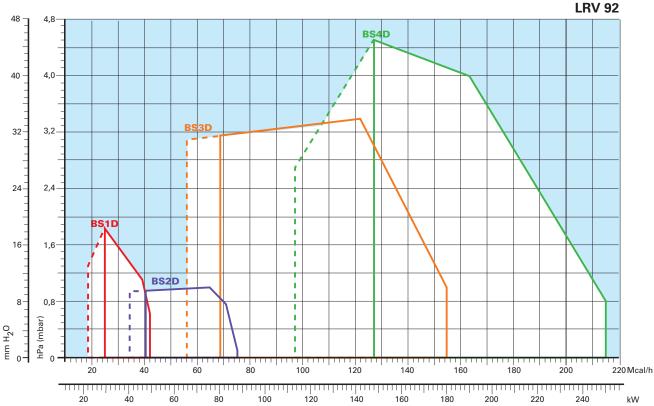
All the Gulliver BSD burners are tested before leaving the factory.

TECHNICAL DATA

Model			▼ BS1D	▼ BS4D				
D				T	-4			
Burner operation mode Modulation ratio at max. output			Two stage					
iviodulation	ratio at max. ou	-						
Servomotor		type	R.B.L. 5 ÷ 25					
	run time	kW	16/19 - 52	-	65/75 - 189	110/140 - 246		
Heat output		Mcal/h	13,8/16,3 - 44,7	35/40 - 91	33113 133			
Working tem	noroturo	°C min./max.	13,8/10,3 - 44,7	30,1/34,4 - 78,2	55,9/64,5 - 162,5 40	94,6/120,4 - 211,6		
•	value G20 gas	kWh/Nm³			0			
G20 gas den		kg/Nm³			71			
G20 gas deli	•	Nm³/h	1,6/1,9 - 5,2	3,5/4 - 9,1	6.5/7.5 - 18.9	11/14 - 24.6		
	value G25 gas	kWh/Nm³	1,0/1,3 - 5,2		.6	11/ 14 - 24,0		
G25 gas den	ŭ	kg/Nm³			,o 78			
G25 gas deli	•	Nm³/h	1.9/2.2 - 6	4/4,7 - 10,6	7.6/8.7 - 22	12,8/16,3 - 28,6		
· ·	value LPG gas	kWh/Nm³	1,3/2,2 - 0	· · · · · · · · · · · · · · · · · · ·	** **	12,07 10,3 - 20,0		
LPG gas den		kg/Nm³	25,8 2.02					
LPG gas deli	•	Nm³/h	0,6/0,7 - 2	2,5/2,9 - 7,3	4,3/5,4 - 9,5			
Fan		type	0,6/0,7 - 2 1,3/1,6 - 3,5 2,5/2,9 - 7,3 4,3/5,4 Centrifugal with forward curve blades					
Air temperat	ure	max °C	40					
Electrical su		Ph/Hz/V	1/50/230 ±10%					
	ctrical supply	Ph/Hz/V						
Control box	,	type		MG	569			
Total electric	al power	kW	0,150	0,180	0,350	0,530		
	ctrical power	kW			-			
Protection le	vel	IP		X	DD .			
Motor electr	ical power	kW	0,09	0,09	0,15	0,25		
Rated motor	current	Α	0,64	0,67	1,4	2		
Motor start	up current	Α	2,6	2,7	5,6	8		
Motor prote	ction level	IP		2	0	1		
		type		Incorporated in	the control box			
Ignition tran	sformer	V1 - V2		(-) -	8 kV			
		l1 - l2		(-)-1	I2 mA			
Operation				Intermittent (at least	one stop every 24 h)			
Sound press	ure	dB (A)	61	62	66	71		
Sound power	r	W		-	-			
CO emission		mg/kWh		<	40			
NOx emission	n	mg/kWh		<	80			
Directive			90/3	96/EEC, 89/336/EEC, 73/2	23/EEC, 98/37/EEC, 92/42	/EEC		
Conforming	to			EN 676 - LRV 92	- BlmSchV 1996			
Certification			CE - 0085 AQ0409 BUWAL - Nr.100010					

Reference conditions: Temperature: 20°C Pressure: 1013,5 mbar Altitude: 100 m a.s.l.


Noise measured at a distance of 1 meter.


Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed.

This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Useful working field for choosing the burner

1st stage operation range

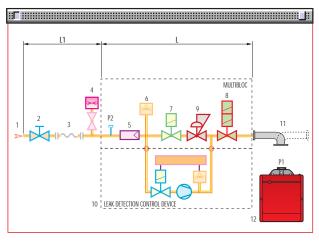
Test conditions conforming to EN 676 and LRV 92:

Temperature: 20 °C Pressure: 1013,5 mbar Altitude: 100 m a.s.l.

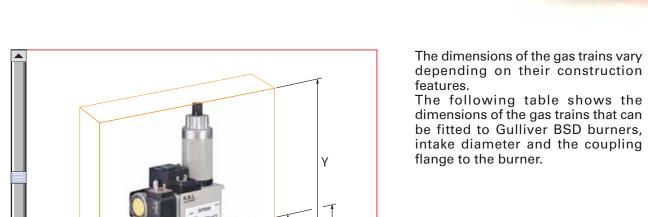
FUEL SUPPLY

GASTRAIN

The burners are set for fuel supply from either the right or left hand sides.


Depending on the fuel output and the available pressure in the supply line, you should check the correct gas train to be adapted to the system requirements.

The gas train is Multibloc type, containing the main components in a single unit and it can be fitted with the valve seal control (as an accessory).


Gas train installed on the burner

MBZRDLE 405 - 407 - 410 - 412

- 1 Gas delivery pipe2 Manual valve
- 3 Vibration damping joint
- 4 Gas pressure gauge
- 5 Filter
- 6 Gas pressure switch
- 7 Safety solenoid
- 8 Adjustment solenoid 1st and 2nd stage: firing delivery adjustment (rapid opening) maximum delivery adjustment (slow opening)
- 9 Pressure regulator
- 10 Leak detection control device for valves 7 and 8 (accessory)
- 11 Gas train-burner adapter
- 12 Burner
- P1 Combustion head pressure
- P2 Upstream pressure from the filter
- L Gas train supplied separately
- L1 To be performed by the installer

W

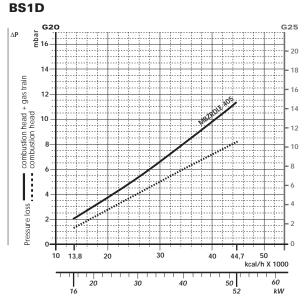
Øο

Χ

	Name	Code	Øi	Øо	X mm	Y mm	W mm	Z mm	V mm	mbar max*
4	MBZRDLE 405	3970539	1/2"	FLANGE 1	246	257	45	120	46	300
0	MBZRDLE 405	3970540	3/4"	FLANGE 2	236	257	47	120	46	300
B	MBZRDLE 407	3970538	3/4"	FLANGE 2	236	257	47	120	46	300
5	MBZRDLE 407	3970541	3/4"	FLANGE 3	236	257	47	120	46	300
5	MBZRDLE 410	3970542	1" 1/4	FLANGE 3	259	315	47	145	55	300
2	MBZRDLE 412	3970543	1" 1/4	FLANGE 3	259	315	47	145	55	300

^{*} max inlet gas pressure (mbar)

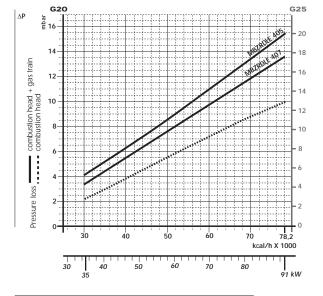
Øi



▶ PRESSURE DROP DIAGRAM

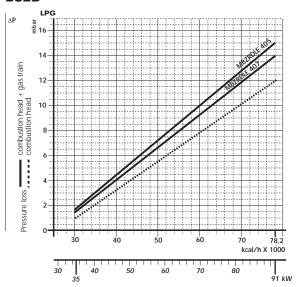
The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; the value thus calculated represents the minimum required input pressure to the gas train.

NATURAL GAS



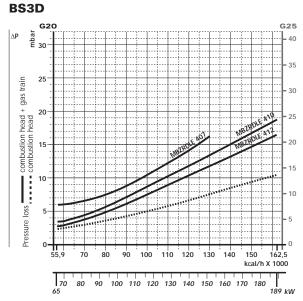
BS1D							
LE	PG						
ΔP ag 16	1		1				
ਵੇਂ 16							
	dete	::::-:	1				
14	1						
.⊑			1				
122						105	ļ
combustion head + gas train combustion head + gas train + gas trai						Medical and	
+_				+		UB !	÷
D 20 10	1	1 1 1	1 1 1		- 	1 1 1 1	
h h	rhain:	:::::::	1:-:				
<u> </u>		. į į į				iiii	ļļ
usti oust			1		.55		
물물			+		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	. 1		1 1 1	1.::			
11:	1						}
4							
4			1				
SS	+	/::	`}				
<u>0</u> 2		/:	1				
in in		•1					tttt
Pressure loss			1				
_ 0		ı	+++				
	10 13	3,8	20	3	0	40 44,7 kca	50 nl/h X 1000
	1	20	1 1 1	30	40	50	60 kW
	•	-				02	

LPG


Gas Train	Code	Plug and socket	
MBZRDLE 405	3970539	•	

BS2D

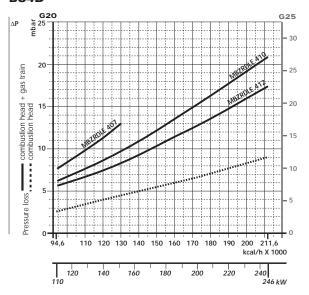
GasTrain	Code	Plug and socket	
MBZRDLE 405	3970540	•	
MBZRDLE 407	3970538	•	


BS2D

NATURAL GAS



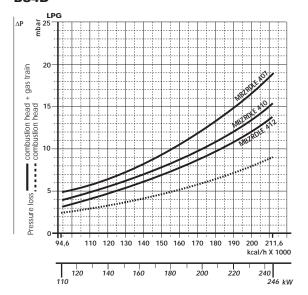
Gas Train	Code	Output	Plug and socket
MBZRDLE 407	3970541	≤ 150 kW *	•
MBZRDLE 410	3970542	-	•
MBZRDLE 412	3970543	-	•


^{*} with natural gas.

BS3D mbar 25 Pressure loss _____ combustion head + gas train

LPG

BS4D



Gas Train	Code	Output	Plug and socket
MBZRDLE 407	3970541	≤ 150 kW *	•
MBZRDLE 410	3970542	-	•
MBZRDLE 412	3970543	-	•

^{*} with natural gas.

BS4D

15

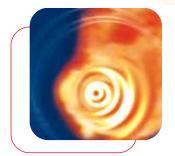
note For pressure levels different from those indicated above, please contact Riello Burners Technical Office.

In LPG plants, Multibloc gas trains do not operate below 0°C. They are only suitable for gaseous LPG (liquid hydrocarbons destroy the seal materials).

VENTILATION

The different ventilation circuits always ensure low noise levels with high performance of pressure and air delivery, inspite of their compact size.

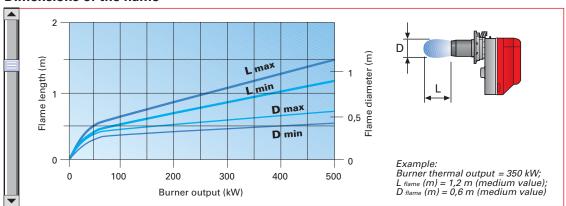
The burners are fitted with an adjustable air pressure switch, conforming to EN 676 standards.


Air suction

Air pressure switch

COMBUSTION HEAD

The combustion head in Gulliver BSD burners is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all the various types of boilers and combustion chambers.

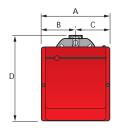

Mobile flange

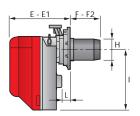
Thanks to the use of a mobile coupling flange, the penetration of the head into the combustion chamber can be adjusted.

Simple adjustment allows the internal geometry of the combustion head to be adapted to the burner output.

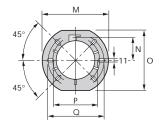
Dimensions of the flame

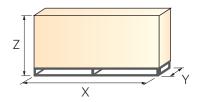
Combustion head




OVERALL DIMENSIONS (mm)

These models are distinguished by their reduced size, in relation to their output, which means they can be fitted to any boiler on the market.


BURNER


Model	А	В	С	D	Е	E1	F	F2	Н	I	L
▶ BS1D	234	122	112	295	230	276	116	70	89	210	41
▶ BS2D	255	125,5	125,5	325	238	252	114	100	106	230	45
▶ BS3D	300	150	150	391	262	280	128	110	129	285	45
▶ BS4D	300	150	150	392	278	301	168	145	137	286	45

BURNER-BOILER MOUNTING FLANGE

Model	М	N	0	Р	Q
▶ BS1D	192	66	167	140	170
▶ BS2D	192	66	167	140	170
▶ BS3D	216	76,5	201	160	190
▶ BS4D	218	80,5	203	170	200

PACKAGING

Model	Х	Υ	Z	kg
▶ BS1D	385	268	340	11
▶ BS2D	395	288	365	12
▶ BS3D	440	335	430	16
▶ BS4D	500	335	430	18

TWO STAGE GAS BURNER

► GULLIVER RSD SERIES ► RS5D

160/208 ÷ 345 kW

The Riello Gulliver RS5D is a new model of the series of two stage gas burners, characterized for its small dimensions in spite of its high combustion performance. It has been developed to respond to any request for home heating, conforming to current regulations in force. This model uses the same components designed by Riello for the Gulliver series. The high quality level guarantees safe working. The Gulliver RSD burners are fitted with a microprocessor - based flame control panel, with diagnostic functions.

In developing this burner, special attention was paid to reducing noise, the ease of installation and adjustment, to obtaining the smallest size possible to fit into any sort of boiler available on the market.

This model is approved by the EN 676 European Standard and European Directives, Gas Appliance, EMC, Low Voltage, Boiler Efficiency.

The Gulliver RS5D burner is tested before leaving the factory.

TECHNICAL DATA

Model			▼ RS5D
Burner opera	tion mode		Two stage
Modulation r	atio at max. ou	tput	-
Servomotor		type	BERGER
	run time	s	3 ÷ 8
Heat output		kW	160/208 - 345
ricut output		Mcal/h	137,6/178,8 - 296,7
Working tem	perature	°C min./max.	0/40
Net calorific	value G20 gas	kWh/Nm³	10
G20 gas dens	sity	kg/Nm³	0,71
G20 gas deliv	very	Nm³/h	16/20,8 - 34,5
Net calorific	value G25 gas	kWh/Nm³	8,6
G25 gas dens	sity	kg/Nm³	0,78
G25 gas deliv	very	Nm³/h	18,6/24,2 - 40,2
Net calorific	value LPG gas	kWh/Nm³	25,8
LPG gas density kg/Nm³		kg/Nm³	2,02
LPG gas deliv	LPG gas delivery Nm³/h		6,2/8,1 - 13,4
Fan	Fan type		Centrifugal with forward curve blades
Air temperature max °C		max °C	40
Electrical sup	Electrical supply Ph/Hz/V		1/50/230 ±10%
Auxiliary elec	trical supply	Ph/Hz/V	.
Control box		type	MG 569
Total electrica	al power	kW	0,450
Auxiliary elec	trical power	kW	.
Protection le	vel	IP	XOD
Motor electri	cal power	kW	0,25
Rated motor	current	Α	2
Motor start u	p current	Α	8
Motor protec	tion level	IP	20
		type	Incorporated in the control box
Ignition trans	sformer	V1 - V2	230 V - 8 kV
· ·		l1 - l2	0,2 A - 12 mA
Operation			Intermittent (at least one stop every 24 h)
Sound pressi	ıre	dB (A)	70
Sound power		w	
CO emission		mg/kWh	<40
NOx emissio	n	mg/kWh	≤120
Directive			90/396/EEC, 73/23/EEC, 89/336/EEC, 92/42/EEC, 98/37/EEC
Conforming t	to		EN 676
Certification			In progress

Reference conditions:

Temperature: 20 °C

Pressure: 1013,5 mbar Altitude: 100 m a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed.

This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Useful working field for choosing the burner

1st stage operation range

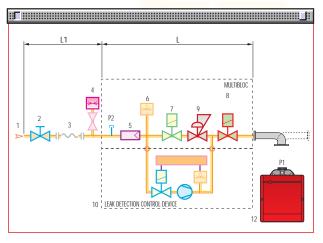
Test conditions conforming to EN 676: Temperature: 20°C Pressure: 1013,5 mbar Altitude: 100 m a.s.l.

FUEL SUPPLY



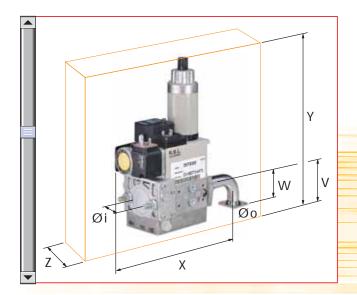
GASTRAIN

The burner is set for fuel supply from either the right or left hand sides.

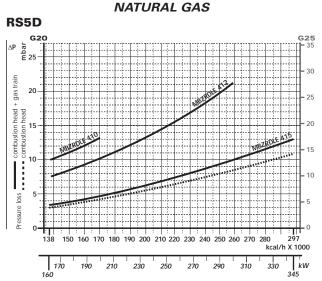

Depending on the fuel output and the available pressure in the supply line, you should check the correct gas train to be adapted to the system requirements.

The gas train is Multibloc type, containing the main components in a single unit, and a valve seal control (as accessory) can be fitted.

Gas train installed on the burner


MBZRDLE 410 - 412 - 415

- 1 Gas delivery pipe
- 2 Manual valve
- 3 Vibration damping joint
- 4 Gas pressure gauge
- 5 Filter
- 6 Gas pressure switch
- 7 Safety solenoid
- 8 Adjustment solenoid 1st and 2nd stage: firing delivery adjustment (rapid opening) maximum delivery adjustment (slow opening)
- 9 Pressure regulator
- 10 Leak detection control device for valves 7 and 8 (accessory)
- 11 Gas train-burner adapter
- 12 Burner
- P1 Combustion head pressure
- P2 Upstream pressure from the filter
- L Gas train supplied separately
- L1 To be performed by the installer


The dimensions of the gas trains vary depending on their construction features. The following table shows the maximum dimensions of the gas trains that can be fitted to Gulliver RS5D burner, intake diameter and the coupling flange to the burner.

	Name	Code	Øi	Øo	X mm	Y mm	W mm	Z mm	V mm	mbar max*
иоглвгос	MBZRDLE 410	3970542	1" 1/4	FLANGE 3	259	315	47	145	55	300
	MBZRDLE 412	3970543	1" 1/4	FLANGE 3	259	315	47	145	55	300
	MBZRDLE 415	3970582	1" 1/2	FLANGE 3	330	350	47	100	80	300

^{*} max inlet gas pressure (mbar)

PRESSURE DROP DIAGRAM

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be combined with them; the value thus calculated represents the minimum required input pressure to the gas train.

Gas train	Code	Output	Plug and socket		
MBZRDLE 410	3970542	≤ 200 kW*	•		
MBZRDLE 412	3970543	≤ 300 kW*	•		
MBZRDLE 415	3970582	-	•		

LPG RS5D gas train oss 280 297 kcal/h X 1000 150 160 170 180 190 200 210 220 230 240 250 260 270 280

* With natural gas.

▶ **note** For pressure levels different from those indicated above, please contact Riello Burners Technical Office.

In LPG plants, Multibloc gas trains do not operate below 0°C. They are only suitable for gaseous LPG (liquid hydrocarbons destroy the seal materials).

VENTILATION

The ventilation circuit ensures low noise level with high performance of pressure and air delivery, inspite of their compact size.

The burner is fitted with an adjustable air pressure switch, conforming to EN 676 standards.

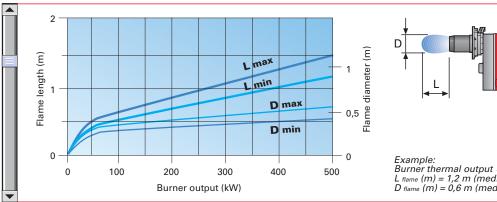
Air suction

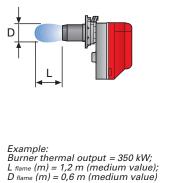
Air pressure switch

COMBUSTION HEAD

The combustion head in Gulliver RS5D burner is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all various

Combustion head

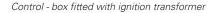

chambers.


Thanks to the use of a mobile coupling flange, the penetration of the head into the combustion chamber can be adjusted.

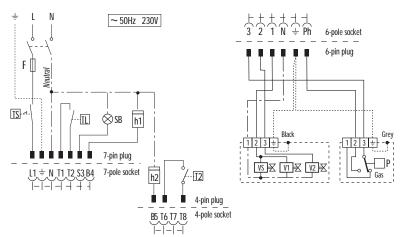
types of boilers and combustion

Simple adjustment allows the internal geometry of the combustion head to be adapted to the burner output.

Dimensions of the flame



WIRING DIAGRAMS



Electrical connections must be made by qualified and skilled personnel, in conformity with the local regulations in force.

"TWO STAGE" OPERATION

Burner electrical wiring

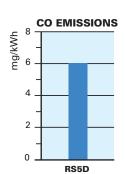
Gas train electrical wiring

- h1 One stage counter hours (230V 0,1A max)
 h2 Two stage counter hours (230V 0,1A max)
 SB Remote lock out signal (230V 0,1A max)
 TL Limit thermostat
 TS Safety thermostat (manual reset)
 T2 Two stage thermostat
 VS Safety valve

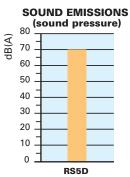
- V1 One stage valve
 V2 2nd stage valve
 P Gas pressure switch
 - Fuse

The following table shows the supply lead sections and types of fuse to be used.

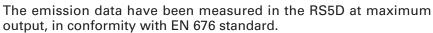
Model	▼RS5D			
	230V			
FΑ	T6A			
mm²	1			
Fuse	L = Lead sec	ction		


NO₂ EMISSIONS 100 80 60

RS5D

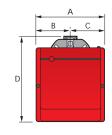

40

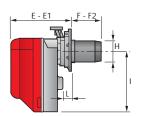
20


0

EMISSIONS

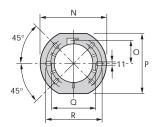
 $\overline{\mathbf{Y}}$

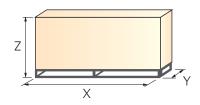

Special attention has been paid to noise reduction. This model is fitted with sound-proofing material inside the cover.



OVERALL DIMENSIONS (mm)

Thanks to certain construction features, this model can be fitted to any boiler on the market.


BURNER


Model	А	В	С	D	E	E1	F	F2	Н	I	L
▶ RS5D	300	150	150	392	278	300	203	225	137	286	45

BURNER-BOILER MOUNTING FLANGE

Model	N	0	Р	Q	R
▶ RS5D	218	80,5	203	170	200

PACKAGING

Model	X	Υ	Z	kg
▶ RS5D	590	335	420	18